3-1-25-SUP

Introduction

- 1. Reduce the computation cost in self-supervised speech models via compressing sequences.
- 2. We propose to use variable-length subsampling for self-supervised speech models.

Experiment Framework

We add a subsampling layer in the DistilHuBERT [Chang et al., 2022] with the two following settings:

With Upsample

Subsample Targets

On Compressing Sequences for Self-Supervised Speech Models

Yen Meng¹*, Hsuan-Jui Chen¹*, Jiatong Shi², Shinji Watanabe², Paola Garcia³, Hung-yi Lee¹, Hao Tang⁴

¹National Taiwan University, ²Carnegie Mellon University, ³Johns Hopkins University, ⁴The University of Edinburgh

Compressing Sequences with Subsampling

Fixed-length Subsampling

Naive approach, using convolution or average pooling.

Variable-length Subsampling

- Incorporates the idea of Continuous Integrate-and-Fire (CIF) [Dong et al., 2020].
- Additional segmentation guidance with pre-extracted boundaries.

Fixed-length Subsampling

Main Results

Evaluation on downstream tasks with the **Subsample Targets** setting. We experiment with segmentation guidance using smoothed HuBERT codes and unsupervised ASR boundaries.

Figure: Average frame period. Downstream performance for different subsampling approaches.

Variable-length Subsampling

Downstream Performance

- duration (80-90ms).
- subsampling.

Runtime Efficiency

We report the average multiply-accumulate operations (MACs). The reduction in MACs is consistent with the sequence length.

Conclusion

This work was supported by JSALT 2022 at JHU, with gift-funds from Amazon, Microsoft, and Google. We thank the Taiwan Web Service and the National Center for High-performance Computing (NCHC) of National Applied Research Laboratories (NARLabs) in Taiwan for providing computing and storage resources.

Discussions

1. The variable-length subsampling recovers the performance for PR and ASR at around the phone

2. The utterance-level tasks are less affected by

3. Using the unsupervised ASR as guidance gives a better performance-efficiency trade-off.

1. Different tasks have different preferred frame rates. 2. Our proposed variable-length subsampling works particularly well under low frame rates.

Acknowledgments