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Introduction

1. Reduce the computation cost in self-supervised
speech models via compressing sequences.

2. We propose to use variable-length subsampling for
self-supervised speech models.
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Experiment Framework

We add a subsampling layer in the DistilHUBERT
Chang et al., 2022] with the two following settings:
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Compressing Sequences with Subsampling

Fixed-length Subsampling

= Nalve approach, using convolution or average pooling.

Variable-length Subsampling

= [ncorporates the idea of Continuous Integrate-and-Fire

(C

= AC

F) [Dong et al., 2020].

ditional segmentation guidance with pre-extracted
boundaries.

Fixed-length Subsampling
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Variable-length Subsampling
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Evaluation on downstream tasks with the Subsample Targets setting. We experiment with seg-
mentation guidance using smoothed HUBERT codes and unsupervised ASR boundaries.
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Figure: Average frame period. Downstream performance for different subsampling approaches.
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Discussions

Downstream Performance

1. The variable-length subsampling recovers the

performance for PR and ASR at around the phone
duration (80-920ms,).

2. The utterance-level tasks are less affected by

subsampling.

3. Using the unsupervised ASR as guidance gives a

better performance-efficiency trade-off.

Runtime Efficiency

We report the average multiply-accumulate operations
(MACs). The reduction in MACs is consistent with the
seguence length.
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Figure: Average frame period vs. MACs.
Conclusion

1. Different tasks have different preferred frame rates.

2. Our proposed variable-length subsampling works

particularly well under low frame rates.
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